Technical parameters and scope

High standards for all ebm-papst products
At ebm-papst we are always looking to improve our products to be able to offer customers just what they need for their particular requirements. Careful monitoring of the market enables us to constantly incorporate enhancements into our products. As shown by the technical parameters listed below, you can always be sure of finding the right solution from ebm-papst for whatever application you may have in mind.

General performance parameters
Any deviations from the technical data and technical parameters described here are given in the product-specific data sheet.

Degree of protection
The degree of protection is specified in the product-specific data sheets.

Insulation class
The insulation class is specified in the product-specific data sheets.

Installation position
The installation position is specified in the product-specific data sheets.

Condensation drainage holes
Information on condensation drainage holes is provided in the product-specific data sheets.

Mode of operation
The mode of operation is specified in the product-specific data sheets.

Protection class
The protection class is specified in the product-specific data sheets.

Service life
The service life of ebm-papst products depends on two main factors:
– The service life of the insulation system
– The service life of the bearing system
The service life of the insulation system is essentially governed by the voltage level, the temperature and the ambient conditions such as humidity and condensation.

The service life of the bearing system is primarily governed by the thermal load on the bearings. For the majority of our products we use maintenance-free ball bearings which can be fitted in any installation position. Sleeve bearings can alternatively be employed, as described in the product-specific data sheets.
As a rough guide (depending on the general conditions), the ball bearings have a life expectancy L10 of approx. 40,000 hours of operation at an ambient temperature of 40 °C.
We will gladly provide you with a life expectancy calculation based on your specific usage conditions.

Motor protection/thermal protection
Information on motor protection and thermal protection is provided in the product-specific data sheets.
The following protection methods are provided depending on the type of motor and area of application:
– Thermal overload protector, in-circuit or external
– PTC with electronic diagnostics
– Impedance protection
– Thermal overload protector with electronic diagnostics
– Current limitation via electronics
If use is made of an external thermal overload protector, a commercially available tripping unit must be connected by the customer for shut-off.
Motor protection conforming to the applicable standard must be fitted for products not provided with a built-in thermal overload protector and not protected against improper use.

Mechanical strain/performance parameters
All ebm-papst products are subjected to comprehensive testing in conformity with the normative specifications and also incorporating the extensive experience of ebm-papst.
Vibration testing
Vibration testing is performed as follows:
– Vibration test in operation according to DIN IEC 68 Part 2-6
– Vibration test at standstill according to DIN IEC 68 Part 2-6

Shock load
Shock load testing is performed as follows:
– Shock load according to DIN IEC 68 Part 2-27

Balancing grade
Balancing grade testing is performed as follows:
– Residual imbalance according to DIN ISO 1940
– Standard balancing quality level G 6.3
Should your particular application require a higher quality level, please contact us and specify the details in your order.

Chemical and physical strain/performance parameters
Please consult your ebm-papst contact for any questions regarding chemical and physical strain.

Areas of use, industries & applications
Our products are used in a variety of industries and for numerous applications:
Ventilation, air conditioning and refrigeration technology, clean room technology, automotive and railway engineering, medical and laboratory technology, electronics, computer and office systems, telecommunications, household appliances, heating systems, machinery and installations, drive engineering.
Our products are not designed for use in the aerospace industry!

Legal and normative specifications
The products described in this catalog are developed and manufactured in accordance with the standards applying to the particular product and, if known, in accordance with the conditions of the particular area of application.

Standards
Information on standards is provided in the product-specific data sheets.

EMC
Information on EMC standards is provided in the product-specific data sheets.
Compliance with EMC standards has to be assessed on the final product, as EMC properties may change under different installation conditions.

Touch current
Information on touch current is provided in the product-specific data sheets.
Measurement is performed according to IEC 60990.

Approvals
Please contact us if you require a specific type of approval (VDE, UL, GOST, CCC, CSA, etc.) for your ebm-papst product.
Most of our products can be supplied with the applicable approval.
Information on existing approvals is provided in the product-specific data sheets.

Air performance measurements
All air performance measurements are conducted on intake-side chamber test rigs conforming to the requirements of ISO 5801 and DIN 24163. The fans under test are attached to the measuring chamber with free air intake and exhaust (installation category A) and operated at nominal voltage, with alternating current also at nominal frequency, without any additional attachments such as a guard grille.
As required by the standards, the air performance curves shown are referenced to an air density of 1.2 kg/m³.
Air and sound measurement conditions
Measurements on ebm-papst products are taken under the following conditions:
– Axial and diagonal fans in airflow direction “V” in full nozzle without guard grille
– Backward-curved centrifugal fans, free-running with inlet ring
– Forward-curved single and dual-inlet centrifugal fans with housing
– Backward-curved dual-inlet centrifugal fans with housing

Sound measurements
All sound measurements are taken in anechoic rooms with reverberant floor. ebm-papst acoustic test chambers meet the requirements of accuracy class 1 as per DIN EN ISO 3745. For sound measurement, the fans being tested are positioned in a reverberant wall and operated at nominal voltage, with alternating current also at nominal frequency, without any additional attachments such as a guard grille.

Sound pressure and sound power level
All acoustic values are determined in accordance with ISO 13347, DIN 45635 and ISO 3744/3745 as per accuracy class 2 and given in A-rated form.
For measurement of the sound pressure level L_p the microphone is located on the intake side of the fan being tested, generally at a distance of 1 m on the fan axis.
For measurement of the sound power level L_w 10 microphones are distributed over an enveloping surface on the intake side of the fan being tested (see graphic). The measured sound power level can be roughly calculated from the sound pressure level by adding 7 dB.

Measurement set-up according to ISO 13347-3 and DIN 45635-38:
- 10 measuring points
- $d \geq D$
- $h = 1,5d ... 4,5d$
- Measurement area $S = 6d^2 + 7d(h + 1,5d)$
Cumulative level of several sound sources with the same level
The addition of 2 sound sources with the same level produces a level increase of approx. 3 dB. The noise characteristics of several identical fans can be predicted on the basis of the sound values specified in the data sheet. This is shown in the adjacent graph.
Example: There are 8 axial fans A3G800 on a condenser. According to the data sheet, the sound pressure level of one fan is 75 dB(A). The level increase determined from the graph is 9 dB. This means that a total level of 84 dB(A) is to be expected for the installation.

Cumulative level of two sound sources with different levels
The noise characteristics of two different fans can be predicted on the basis of the sound values specified in the data sheet. This is shown in the adjacent graph.
Example: In a ventilation unit, there is one axial fan A3G800 with a sound pressure level of 75 dB(A) at the point of operation and one axial fan A3G710 with 71 dB(A). The difference in level is 4 dB. The level increase of approx. 1.5 dB can now be read off the graph. This means that a total level of 76.5 dB(A) is to be expected for the unit.

Distance laws
The sound power level is not governed by the distance from the noise source. By contrast, the sound pressure level decreases with increasing distance from the sound source. The adjacent graph shows the decrease in level under far field conditions. Far field conditions apply if there is a considerable distance between the microphone and the fan in relation to the fan diameter and the wavelength under consideration. On account of the complexity of the topic, literature should be consulted for more detailed information on far fields. The level in the far field decreases by 6 dB each time the distance is doubled. Different relationships apply in the near field of the fan and the level may decrease to a far lesser extent. The following example only applies to far field conditions and may vary considerably as a result of installation effects:
For an axial fan A3G300, a sound pressure level of 65 dB(A) was measured at a distance of 1 m. From the adjacent graph, this would yield a reduction of 26 dB at a distance of 20 m, i.e. a sound pressure level of 39 dB(A).