Ex-protected fans with EC technology.

Saving energy safely.
ebm-papst presents the first ex-protected EC fans.

Now ATEX applications can finally benefit from the advantages of modern EC technology, too. ebm-papst is the first manufacturer in the world to have specially developed highly efficient GreenTech EC fans for use in explosive areas. These are available as axial and centrifugal fans with backward-curved impeller blades. The products are based on our multiple award-winning HyBlade® and RadiPac product ranges, which have set global benchmarks for efficiency, noise and compactness.

Axial fans are available in sizes of 630–990 with up to 33,000 m³/h, centrifugal fans in sizes 400–630 with up to 15,000 m³/h.

A highly developed plug & play system allows the fans to be ready for use quickly. This saves time and money:
- Perfectly attuned components
- Pre-wired and pre-programmed
- No separate frequency converter and motor protection switch required
- Includes conformity declaration for motor and electronics

Life cycle costs can also be significantly reduced through the use of GreenTech EC technology and system solutions:
- Quick and easy commissioning
- Highly efficient GreenTech EC motor that exceeds efficiency class IE4
- 30% average energy saving compared to AC technology
Certified safety.

ebm-papst’s ex-protected fans are based on the proven 3 kW GreenTech EC external rotor motor and are tested and certified in line with the European product directive ATEX 94/9/EC. They therefore meet all demands made of devices used in areas at risk of explosion. Our axial and centrifugal ex-protected fans are suitable for equipment group II (explosion-protected areas outside mining) and the gases and vapours substance group in explosion group IIB.

Our ex-protected fans can be used in hazard zones 1 and 2. They therefore correspond to category 2G (ATEX) and have the equipment protection level Gb (EN 60079-0).

As per the ATEX 1999/92/EC operating directive, the facility operator is responsible for the categorisation of hazard zones. The corresponding equipment categorisation is performed by the manufacturer, i.e. ebm-papst.

Ex marking of the ebm-papst fans as per ATEX and EN 60079-0:

<table>
<thead>
<tr>
<th>Ex marking</th>
<th>Group</th>
<th>Equipment category</th>
<th>Ignition protection types</th>
<th>Temperature classes</th>
<th>Explosion group</th>
<th>Equipment protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 2G Ex d e ib</td>
<td>IIB T3</td>
<td>Gb</td>
<td></td>
<td>Zone 1</td>
<td>Occasionally</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zone 2</td>
<td>Hardly ever, rarely</td>
<td></td>
</tr>
<tr>
<td>I 1G</td>
<td>p m o q</td>
<td>a</td>
<td>Very high protection</td>
<td>IIC T4 T5 T6 Ga</td>
<td>Zone 0</td>
<td>Constantly, often</td>
</tr>
</tbody>
</table>

The following requirements are not covered:

- Not available
HyBlade®

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3G630 GU23 91</td>
<td>630</td>
<td>150</td>
<td>750</td>
<td>805</td>
<td>ø 9 (4x)</td>
<td>20</td>
</tr>
<tr>
<td>W3G710 GU21 91</td>
<td>710</td>
<td>170</td>
<td>810</td>
<td>850</td>
<td>ø 14.5 (4x)</td>
<td>20</td>
</tr>
<tr>
<td>W3G800 GV01 91</td>
<td>800</td>
<td>190</td>
<td>910</td>
<td>970</td>
<td>ø 14.5 (4x)</td>
<td>17</td>
</tr>
<tr>
<td>W3G910 GV02 91</td>
<td>910</td>
<td>205</td>
<td>1,010</td>
<td>1,070</td>
<td>ø 14.5 (4x)</td>
<td>20</td>
</tr>
<tr>
<td>W3G990 GZ02 91</td>
<td>990</td>
<td>225</td>
<td>1,110</td>
<td>1,170</td>
<td>ø 14.5 (4x)</td>
<td>20</td>
</tr>
</tbody>
</table>

Dimensions in mm

RadiPac

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3G400 AQ23 90</td>
<td>400</td>
<td>500</td>
<td>475</td>
<td>15</td>
<td>106</td>
<td>331</td>
<td>ø 9 (4x)</td>
</tr>
<tr>
<td>K3G450 AQ24 90</td>
<td>450</td>
<td>630</td>
<td>504</td>
<td>15</td>
<td>108</td>
<td>357</td>
<td>ø 9 (4x)</td>
</tr>
<tr>
<td>K3G500 AP25 90</td>
<td>500</td>
<td>630</td>
<td>517</td>
<td>15</td>
<td>109</td>
<td>369</td>
<td>ø 9 (4x)</td>
</tr>
<tr>
<td>K3G560 AP23 90</td>
<td>560</td>
<td>760</td>
<td>568</td>
<td>15</td>
<td>123</td>
<td>339</td>
<td>ø 9 (4x)</td>
</tr>
<tr>
<td>K3G630 AP01 90</td>
<td>630</td>
<td>760</td>
<td>700</td>
<td>15</td>
<td>254</td>
<td>340</td>
<td>ø 9 (4x)</td>
</tr>
</tbody>
</table>

Dimensions in mm

* Screw-on position for vibration and/or spring elements. Floor mounting only for horizontal shaft position.
Two model series – one drive.

HyBlade® axial fan

Aerodynamics
- Full bell mouth integrated on the intake side
- Efficiency-boosting blade profile
- High degree of efficiency
- Low noise levels

Robust design
- Wall plate made from Sendzimir-galvanised sheet steel, painted

Flexible installation
- Installation with horizontal and vertical motor shaft

Innovative materials
- Blades made of fibreglass-reinforced composite material
- Core made from corrosion-resistant aluminium structure

Low vibration
- Motor-impeller unit dynamically balanced in two planes

Explosion protection
- Impeller strength surpasses standard requirement
- Pre-set ring gap between wall plate and impeller ensured as per ATEX 94/9/EC standard
- Earth connection for dissipating electrostatic charges
- Impeller blades with special anti-static surface
- Safe steel-plastic material pairing as per EN14986

Electronics

Simple commissioning
- Pre-programmed ex-works
- Central terminal area for mains connection, alarm relay, control and bus system

Versatile
- Continuously variable speed settings
- Control signal 0–10 V DC, PWM, 4–20 mA and MODBUS-RTU
- Integrated PID controller

Explosion protection
- Pressure-resistant encapsulation of performance electronics
- ATEX-certified spring clamp terminal block (special tool not included)
- Improved heat dissipation
- Additional protection and sensor electronics via Ex-certified components (cable glands, etc.)
RadiPac centrifugal fan

Aerodynamics
- High static efficiency
- Aerodynamically optimised blade channel
- Low noise emissions
- Diagonal trailing edge for optimised flow control
- Integrated rotating diffuser
- Inlet ring adjusted to impeller

Operating characteristics
- Low vibration
- Dynamic balancing of the motor impeller rotor unit
- Minimal structure-borne noise generation
- Low impeller weight reduces bearing load

Robust design
- Stable cube-shaped assembly frame
- Suitable for permanently high tip speeds
- Corrosion-resistant aluminium
- Entirely robot-welded blades

Explosion protection
- Impeller strength surpasses standard requirement
- Pre-set ring gap between inlet ring and impeller ensured as per ATEX 94/9/EC standard
- Safe aluminium-aluminium material pairing as per EN14986

GreenTech EC motor

Unrivalled compact design
- Impeller mounted directly on the external rotor
- No external frequency converter needed thanks to EC technology

High efficiency
- Low copper and iron losses
- No slip losses thanks to synchronous running
- Use of permanent magnets means no magnetic reversal losses in the rotor

Economical operation
- Improved commutation results in greater partial-load operation
- Highly efficient operation even at partial load
- Long service life thanks to maintenance-free ball bearings and brushless commutation

Sustainable operation
- No rare earth magnets

Explosion protection
- Ignition protection type “Increased safety” as per ATEX in the motor area
The performance measurements for all fans are conducted on cutting edge airflow test rigs. The entire fan unit, consisting of the motor, the control electronics and the impeller, is measured at different load levels. This provides us with reliable data, meaning that when you are choosing your fans, you can count on these values being met.

This rules out any nasty surprises when commissioning the fans. The measurement data form the basis for the design program available on request. Use this software to calculate expected operating costs or conduct a cost analysis for the life cycle.

Nenndaten HyBlade®

<table>
<thead>
<tr>
<th>Article number</th>
<th>Motor</th>
<th>VAC</th>
<th>Hz</th>
<th>Speed (^1)</th>
<th>Max. input power (^1)</th>
<th>Max. input current (^2)</th>
<th>Perm. ambient temperature</th>
<th>Weight</th>
<th>Max. back pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3G630 GU23 91</td>
<td>M3G 150-IF</td>
<td>3 – 380–440</td>
<td>50/60</td>
<td>1,510</td>
<td>3,140</td>
<td>4.8</td>
<td>–40...+60</td>
<td>47</td>
<td>290</td>
</tr>
<tr>
<td>W3G710 GU21 91</td>
<td>M3G 150-IF</td>
<td>3 – 380–440</td>
<td>50/60</td>
<td>1,250</td>
<td>2,830</td>
<td>4.3</td>
<td>–40...+60</td>
<td>49</td>
<td>240</td>
</tr>
<tr>
<td>W3G800 GV01 91</td>
<td>M3G 150-NA</td>
<td>3 – 380–440</td>
<td>50/60</td>
<td>1,090</td>
<td>2,780</td>
<td>4.2</td>
<td>–40...+60</td>
<td>60</td>
<td>250</td>
</tr>
<tr>
<td>W3G910 GV02 91</td>
<td>M3G 150-NA</td>
<td>3 – 380–440</td>
<td>50/60</td>
<td>1,000</td>
<td>2,760</td>
<td>4.2</td>
<td>–40...+60</td>
<td>63</td>
<td>190</td>
</tr>
<tr>
<td>W3G990 GZ02 91</td>
<td>M3G 150-NA</td>
<td>3 – 380–440</td>
<td>50/60</td>
<td>960</td>
<td>2,450</td>
<td>3.7</td>
<td>–40...+60</td>
<td>69</td>
<td>180</td>
</tr>
</tbody>
</table>

RadiPac nominal

K3G400 AQ23 90	M3G 150-FF	3 – 380–440	50/60	2,550	3,100	4.7	–25...+40	48	
K3G450 AQ24 90	M3G 150-FF	3 – 380–440	50/60	2,040	2,950	4.5	–25...+40	57	
K3G500 AP25 90	M3G 150-FF	3 – 380–440	50/60	1,780	2,960	4.5	–25...+40	63	
K3G560 AP23 90	M3G 150-IF	3 – 380–440	50/60	1,500	2,940	4.5	–25...+40	79	
K3G630 AP01 90	M3G 150-NA	3 – 380–440	50/60	1,130	2,970	4.6	–25...+40	89	

\(^1\) Nominal data at operating point with maximum load and 400 VAC