The new DiaForce 80 – even more compact, even more quiet.

# The future of high-performance cooling is now in your hands.



The curtain rises for the new DiaForce 80 – our diagonal compact fan is now available in a new size.

The DiaForce 80, little brother of the DiaForce 120, continues to set new standards. If you look at the space it requires in particular, it is THE perfect addition to server racks, high-performance power units, routers, network technology and 5G base stations. And, of course, the little one also has the same benefits as the bigger one.

## The benefits – in short:

The innovative, aerodynamic design ensures that it is quieter and more efficient than counter-rotating fans of similar size. Especially because the tonal noise, whose frequencies are perceived by the perceived as particularly annoying by the human ear, is much more pleasant in direct comparison with counter-rotating fans.

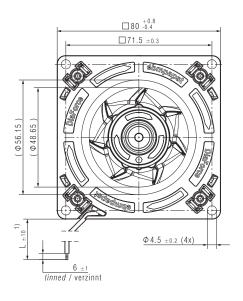
Do you need a powerful fan that can still provide sufficient cooling in your application that has large back pressures? Do you want to be sure that not even a fan failure can lead to the system overheating and so do you want a certain amount of redundancy that you have usually only seen in double-level fan solutions?

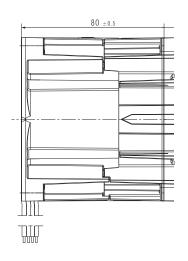
Use the power reserves that the DiaForce has to offer, creating redundancy with sufficient cooling at all times.

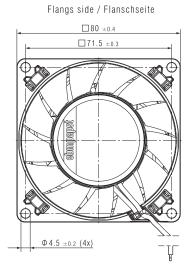
To yield the cooling capacity required in server racks, for example, an array of several fans ensures sufficient air capacity and cooling for the system. The speed of the fans in these areas of application is regulated based on requirements. They are never permanently operated at full power.

Depending on the application, the fans run on average at 40–60% of their potential speed. Not only does this save energy, but – thanks to the DiaForce's power reserves – it also means that a defective fan in the application can simply be "replaced" by the remaining fans doing the extra work.

#### Did you know?


Powerful and modern double-stage fans are no longer standard fans in series but rather they comprise a perfectly coordinated aero-dynamic system. Each has their own power electronics and therefore they offer a theoretical redundancy. When viewed separately, however, each stage offers much less cooling capacity than a single fan. Conventional double-stage fans with two standard fan impellers turning in the opposite direction in series do not perform nearly as efficiently or quietly.


Which means that the power reserves that the DiaForce offers in itself provides redundancy and safety for your system.


**ebmpapst** 

engineering a better life

## Wow on the outside and wow on the inside.







## Technology:

- + Innovative, aerodynamic concept
- Powerful yet efficient and quiet compared to conventional double-stage solutions
- + PWM input for variable speed control
- + Speedometer signal

## Material:

- + Flange: Die cast aluminum+ Fan impeller: Plastic
- + Inlet nozzle: Plastic

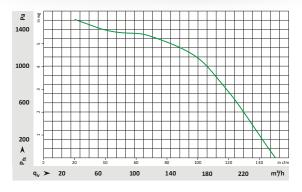
## Weight:

+ 399 g

## Approvals provided:

- + DIN EN 62368
- + UL507
- + CSA22.2 no. 113
- + CE
- + UKCA
- + CCC

## Options:


- + Speed control, analog (0 to 10 VDC)
- + Output signal: Alarms

### Contact:

Bernhard Thürmer +49 7724 81-1216

bernhard.thuermer@de.ebmpapst.com





## The highlights for you at a glance:

- + Up to 10 dB(A) guieter
- + High efficiency
- + Compact design
  - Ultimate performance



#### DiaForce 80 nominal data

| Characteristic curve | Nominal voltage | Speed  | Temperature range | (2pulses per<br>revolution), PWM |
|----------------------|-----------------|--------|-------------------|----------------------------------|
|                      | V DC            | rpm    | °C                |                                  |
|                      | 12              | 20,000 | -20 to +70        | <b>✓</b>                         |
|                      | 24              | 20,000 | -20 to +70        | ✓                                |
| Α                    | 48              | 23,000 | –20 to +70        | <b>✓</b>                         |

The fan characteristic curve shown corresponds to the 48 VDC version. The fan characteristic curves for the 12 VDC and 24 VDC versions are not shown.